Link to USGS home page
Sound Waves Monthly Newsletter - Coastal Science and Research News from Across the USGS
Home || Sections: Spotlight on Sandy | Fieldwork | Research | Outreach | Meetings | Awards | Staff & Center News | Publications || Archives

 

Fieldwork

International Team Studies Tsunami Deposits in Japan to Improve Understanding and Mitigation of Tsunami Hazards



in this issue:
 next story

The March 11, 2011, magnitude 9.0 Tohoku earthquake off the coast of Japan generated a tsunami that inundated a large area on the northeast coast of Honshu, the country's main island, resulting in widespread devastation (see related Sound Waves article "Japan Lashed by Powerful Earthquake, Devastating Tsunami"). At this writing (June 1), the death toll stands at approximately 15,000 and the number of missing at approximately 8,000 (http://earthquake-report.com/2011/05/13/japan-tsunami-a-massive-update-for-our-catdat-situation-report-part-15/). The earthquake was one of the five most powerful earthquakes recorded in the world since instrumental detection and record keeping began around 1900. The resulting tsunami flooded dozens of coastal cities, numerous ports, and the broad coastal plain around Sendai—the nearest major city to the earthquake, at a distance of 130 km (80 mi) from the epicenter. It is now estimated from aerial and satellite photography that an area of almost 500 km2 (200 mi2) was inundated by the tsunami.

Members of the May 2011 international tsunami survey team near their main survey transect. Sites where the international tsunami survey team worked on the Sendai coastal plain in Japan in May 2011.
Above left: Members of the May 2011 international tsunami survey team near their main survey transect. Sendai Airport is in the background. Survey team members and affiliations are (bottom row, left to right) Kazuhisa Goto (Chiba Institute of Technology, Japan), Shigehiro Fujino (University of Tsukuba, Japan), Witek Szczuciski (Adam Mickiewicz University, Poland), Yuichi Nishimura (Hokkaido University, Japan), Daisuke Sugawara (Tohoku University, Japan); (top row, left to right) Eko Yulianto (Indonesian Institute of Science, Indonesia), Rob Witter (Oregon Department of Geology and Mineral Industries, U.S.A.), Catherine Chagué-Goff (University of New South Wales, Australia), Dave Tappin (British Geological Survey, United Kingdom), Bruce Richmond (USGS, U.S.A.), and Bruce Jaffe (USGS, U.S.A.). [larger version]

Above right:
Sites where the international tsunami survey team worked on the Sendai coastal plain in Japan in May 2011. Background images, taken before the March 11, 2011, earthquake and tsunami, are from the Geospatial Information Authority of Japan (GSI) Web site. [larger version]

In May 2011, U.S. Geological Survey (USGS) scientists Bruce Jaffe and Bruce Richmond examined sediment deposited by the tsunami in and around Sendai as part of an international tsunami survey team organized by Japanese scientific cooperators. The 11 members of the team came from Japan, the United States, Australia, Poland, the United Kingdom, and Indonesia.

Survey teams try to enter tsunami-stricken areas as soon as possible after rescue and recovery work to document physical evidence of tsunami flow characteristics—such as debris in trees, high-water stains on buildings, and sedimentary deposits—before it is degraded or destroyed by natural forces or cleanup activities. Japanese researchers began this process during the second week after the earthquake; as the situation in Japan improved, they invited scientists from the international tsunami-research community to assist with gathering data from the large area affected by the tsunami.

exposed foundations and scattered debris
Above: The March 11, 2011, tsunami destroyed most buildings in Yuriage, leaving exposed foundations and scattered debris. The tsunami flow was about 8 m (26 ft) deep here and moved a stone monument off the top of the artificial hill in the background on the left side of the photograph. The stone had been placed as a reminder of the 1933 Showa tsunami that killed many in Yuriage. [larger version]

Building damaged by the tsunami in Yuriage.
Above: Building damaged by the tsunami in Yuriage. The tsunami flow depth here was approximately 8 m (26 ft). [larger version]

The May reconnaissance survey focused on the characteristics of tsunami sediment deposits in the vicinity of Sendai Airport, with a specific emphasis on how these characteristics varied with tsunami speed and flow depth, topography (including microtopography), distance from the coast, urban and rural settings, land subsidence caused by the earthquake, and other aspects of natural and man-made features of the landscape. Among the information the scientists collected were data on water levels, flow directions, topography, sediment thickness, grain size, and sedimentary structures (patterns in the sediment produced by variations in such factors as the speed of the water from which the sediment was deposited and the composition and grain size of the sediment). They also collected sediment samples for microfossil, geochemical, and other analyses. The sedimentary evidence of the tsunami was complicated by liquefaction of some coastal-plain sediment during the earthquake and an extensive canal system that affected the movement of the tsunami waves and the sediment they carried.

Diagram illustrating some of the terms used to describe tsunami characteristics.
Above: Diagram illustrating some of the terms used to describe tsunami characteristics. [larger version]

Photographs from Arahama beach on the Sendai coastal plain taken (A) before (April 11, 2010) and (B) after (May 4, 2011) the tsunami show damage to vegetation, landscape, and buildings.
Above: Photographs from Arahama beach on the Sendai coastal plain taken (A) before (April 11, 2010) and (B) after (May 4, 2011) the tsunami show damage to vegetation, landscape, and buildings. The buildings at far right and left were completely destroyed; all that remains are their foundations. The restroom building in the center survived the tsunami but underwent extreme scour and channeling around its base. The highest point of limb removal on the trees (trim line) shows the minimum water level of the tsunami in this area, which was measured as between 7 and 9 m (23 and 30 ft) above the ground (10-12 m [33-39 ft] above sea level). [larger version]

This tsunami was particularly well documented in video footage shot by news agencies and citizens. The survey team took advantage of the video data by focusing their measurement and sampling efforts on areas where footage is available. One video they are using, posted at http://www.zimbio.com/Japan+Earthquake+2011/articles/PF8WtyjiF4c/Sendai+Tsunami+Video+Japan, shows the tsunami hitting the Sendai Airport. The team collected data along a transect near the airport where sand and mud were deposited more than 4 km inland—the longest post-tsunami transect in which tsunami deposits have been mapped in detail. The scientists will compare data from the sediment deposits with data from the video in hopes of relating characteristics of the deposits to the flow history of the tsunami. For example, they will compare the number and thickness of layers in the tsunami deposits with the number of waves and the flow speeds observed in the video.

The data collected in Japan, like data collected in field surveys after other recent tsunamis, will improve scientists' ability to recognize and interpret tsunami deposits from ancient events. Some of the scientists on the survey team will use the data to develop numerical models of tsunami sediment transport that can be applied to tsunami deposits in the geologic record to determine the characteristics—approximate size and speed, for example—of ancient tsunamis. Data from the Japanese study will also help scientists improve criteria for distinguishing tsunami deposits from large-storm deposits (see related Sound Waves article "Distinguishing Tsunami from Storm Deposits in the Geologic Record").

Wall of excavated trench showing the sedimentary structures of a tsunami deposit Yuichi Nishimura shows other members of the international tsunami survey team a sediment core taken by the geoslicer
Above left: Wall of excavated trench showing the sedimentary structures of a tsunami deposit (mostly horizontal sand layers) and locations (rectangular markers on right) where sediment samples were collected for laboratory analyses. [larger version]

Above right:
Yuichi Nishimura shows other members of the international tsunami survey team a sediment core taken by the geoslicer, a tool used to search for ancient tsunami deposits. [larger version]

Additionally, the reconnaissance team will attempt to draw analogies between the March 11, 2011, tsunami deposits and deposits of predecessor events, such as the Jōgan tsunami, which struck the Sendai plain in A.D. 869 and was named after the emperor of the time. Japanese scientist Koji Minoura (Tohoku University) and colleagues published a paper in 2001 describing Jōgan tsunami sand deposits and two older sand deposits interpreted as evidence of earlier large tsunamis (Journal of Natural Disaster Science, v. 23, no. 2, p. 83-88, http://www.jsnds.org/contents/jnds/23_2.html). The ages of the two earlier tsunami deposits are A.D. 140-150 and 910-670 B.C. On the basis of this limited paleotsunami record for the Sendai coastal plain, the authors inferred a tsunami recurrence interval of 800-1,100 years. At the end of the paper they wrote, "More than 1,100 years have passed since the Jōgan tsunami and, given the reoccurrence interval, the possibility of a large tsunami striking the Sendai plain is high. Our numerical findings indicate that a tsunami similar to the Jōgan one would inundate the present coastal plain for about 2.5-3 km inland," a prediction that proved remarkably accurate.

Core collected by the survey team Left: Core collected by the survey team 1.6 km (1 mi) inland at Arahama on the Sendai coastal plain contains sandy deposits from the A.D. 869 Jōgan tsunami about 40 cm beneath the March 11, 2011, tsunami deposits. We chose the site on the basis of a report of the Jōgan tsunami deposits by Yuki Sawai (Active Fault Research Center) and colleagues in the Annual Report on Active Fault and Paleoearthquake Researches (2008, no. 8, p. 17-70, http://unit.aist.go.jp/actfault-eq/seika/h19seika/pdf/02.sawai.pdf [5.5 MB PDF]) and numerical modeling of Jōgan tsunami inundation by Kenji Satake (Active Fault Research Center) and colleagues (same volume, p. 71-89, http://unit.aist.go.jp/actfault-eq/seika/h19seika/pdf/03.satake.pdf [7.1 MB PDF]). The relative magnitudes of the Jōgan and 2011 tsunamis cannot be inferred from the thickness of each deposit, which is affected by local topography as well as sediment grain size and tsunami flow speed. [larger version]

Japan not only has the longest written record of historical tsunamis in the world, but it also has a vigorous paleotsunami research program designed to extend the tsunami record into the past and improve tsunami-hazard assessments. Examining field evidence of recent and historical tsunamis is critical to understanding these infrequent but catastrophic phenomena. The data collected recently in Japan by the international tsunami survey team will be used to develop tools for interpreting the geologic record of tsunamis. These tools can be applied to other areas where the same coastal hazard is present, such as the Pacific Northwest coast of the United States, and used to decrease future loss of life and property from tsunamis.

To view additional photographs of the March 2011 tsunami's impacts, please visit the USGS Pacific Coastal and Marine Science Center Web page at http://walrus.wr.usgs.gov/news/field.html.

 

Related Sound Waves Stories
Japan Lashed by Powerful Earthquake, Devastating Tsunami
March 2011
Distinguishing Tsunami from Storm Deposits in the Geologic Record
November 2007

Related Web Sites
Notes from the Field...The March 11, 2011, Tsunami
USGS
PBS NewsHour story on the March 11, 2011, Japan tsunami that included Jaffe: "Japan Tsunami Disaster a Wake-Up Call to U.S. West Coast"
PBS NewsHour
The 869 Jogan tsunami deposit and recurrence interval of large-scale tsunami on the Pacific coast of northeast Japan
Journal of Natural Disaster Science
Numerical simulation of the AD 869 Jogan tsunami in Ishinomaki and Sendai plains (7.1 MB PDF)
Annual Report on Active Fault and Paleoearthquake Researches
A study on paleotsunami using hand corer in Sendai plain (Sendai City, Natori City, Iwanuma City, Watari Town, Yamamoto Town), Miyagi, Japan (5.5 MB PDF)
Annual Report on Active Fault and Paleoearthquake Researches

in this issue:
 next story

 

Mailing List:


print this issue print this issue

in this issue:

Fieldwork
cover story:
International Team Studies Tsunami Deposits

Scuba Diving in Marine Research

Prescribed Burn in the Florida Everglades

Research Lionfish Spread Unprecedented

San Francisco Bay Influenced by Factors Far Out at Sea

Awards USGS Scientist Wins National Wildlife Federation Award

Publications June 2011 Publications


FirstGov.gov U. S. Department of the Interior | U.S. Geological Survey
Sound Waves Monthly Newsletter

email Feedback | USGS privacy statement | Disclaimer | Accessibility

This page is http://soundwaves.usgs.gov/2011/06/index.html
Updated May 06, 2014 @ 02:13 PM (JSG)