Link to USGS home page
Sound Waves Monthly Newsletter - Coastal Science and Research News from Across the USGS
Home || Sections: Spotlight on Sandy | Fieldwork | Research | Outreach | Meetings | Awards | Staff & Center News | Publications || Archives



Assessing the Probabilities of Extreme Flood Hazards—Workshop Proceedings Released

in this issue:
 previous story | next story

Cover of new report, Proceedings of the Work-shop on Probabilistic Flood Hazard Assessment (PFHA).

Above: Cover of new report, Proceedings of the Workshop on Probabilistic Flood Hazard Assessment (PFHA). Logos along the bottom represent the Federal agencies that cooperated with the U.S. Nuclear Regulatory Commission (NRC) to plan and conduct the workshop (left to right): U.S. Army Corps of Engineers, Federal Energy Regulatory Commission, U.S. Bureau of Reclamation, USGS, and U.S. Department of Energy. [larger version]

The results of a workshop prompted by extreme flooding during the 2011 Japanese tsunami have been published. Proceedings of the Workshop on Probabilistic Flood Hazard Assessment (PFHA) was released in September 2013 by the U.S. Nuclear Regulatory Commission (NRC).

The tsunami triggered by the Tohoku earthquake of March 11, 2011 (see "Japan Lashed by Powerful Earthquake, Devastating Tsunami," Sound Waves, March 2011), caused widespread damage and many thousands of deaths. It also flooded Japan’s Fukushima Dai-ichi nuclear power plant, knocking out backup power systems needed to cool the plant’s reactors. Several of the reactors underwent fuel melting, hydrogen explosions, and the most extensive release of radioactivity since the Chernobyl accident in 1986. Radioactive contamination from the plant forced the evacuation of communities as far as 25 miles away and affected as many as 100,000 residents. (Congressional Research Service, 2012, R41694, PDF, approx. 1 MB)

To address flooding events such as this one, with extremely low probabilities but extremely severe consequences, the NRC held a “Workshop on Probabilistic Flood Hazard Assessment (PFHA),” January 29–31, 2013, at NRC headquarters in Rockville, Maryland. Participants from Federal agencies and other organizations examined numerous flood-causing mechanisms—including extreme rainfall, flood-induced dam and levee failures, tsunami flooding, river flooding, extreme storm surge, and combined-events flooding—and shared information about the probabilistic assessment of these hazards.

Probabilistic hazard assessment entails creating and testing mathematical models of many possible sets of conditions that might cause or influence a hazard. In the case of earthquake-generated tsunamis, for example, a probabilistic assessment might model thousands of possible sets of earthquake parameters, generate thousands of possible tsunami scenarios, and report each of their probabilities. Probabilistic techniques have been used for many years in weather forecasting and now are coming into favor for assessing other hazards, such as tsunamis, dam failures, and extreme storm surge.

An earlier, complementary technique—deterministic hazard analysis—entails modeling an event with a specific set of parameters (commonly a “worst-case” event) and determining one or a few scenarios that will result. Deterministic assessments typically produce a single, vivid story that can capture public attention and assist agencies and communities in developing emergency-response plans; an example is the USGS SAFRR Tsunami Scenario described in “Experts Team Up on Tsunami Resilience in California,” this issue.

Altus Dam, Oklahoma.
Above: Altus Dam, Oklahoma. Image from a case study presented at the workshop by hydrologic engineer Nicole Novembre (Bureau of Reclamation) titled “Use of Stochastic Event Flood Model and Paleoflood Information to Develop Probabilistic Flood Hazard Assessment for Altus Dam, Oklahoma.” [larger version]

Probabilistic assessments produce numerous possible scenarios, reporting the probabilities not only of each scenario but also of each factor considered to affect the scenario—such as the tidal stage at the time a hurricane storm surge reaches land, the direction of the storm’s approach, the strength of its winds, and many additional variables. Probabilistic assessments are used by FEMA’s National Flood Insurance Program to set flood-insurance rates and by engineers to weigh the costs and benefits of designs for such structures as bridges, dams, seawalls, coastal highways, and nuclear power plants.

“Cooperation and collaboration among Federal and local agencies and stakeholders in the sharing of flood risk information is very important to leverage limited resources and to serve the American public.”

K. Steven West, Deputy Director, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, in foreword to the new report.

The workshop was organized and conducted by the NRC in cooperation with the U.S. Department of Energy (DOE), the U.S. Bureau of Reclamation, the U.S. Army Corps of Engineers, the U.S. Geological Survey (USGS), and the Federal Energy Regulatory Commission. Other contributors were the National Weather Service of the National Oceanic and Atmospheric Administration, the Federal Emergency Management Agency (FEMA), and invited industry, academic, and DOE national laboratory experts. Significant technical support was also provided by Deltares, an independent institute in the Netherlands for applied research in the field of water, subsurface, and infrastructure.

U.S. Geological Survey (USGS) researchers were involved in the workshop at all levels. Hydrologist Timothy Cohn (Reston, Virginia) and geophysicist Eric Geist (Menlo Park, California) served on the organizing committee and co-chaired panels on Tsunami Flooding (Geist) and State-of-the-Practice in Identifying and Quantifying Extreme Flood Hazards (Cohn). Hydrologist Robert Mason (Deputy Chief, USGS Office of Surface Water, Reston) was the USGS management liaison for the workshop. Geophysicist Uri ten Brink (Woods Hole, Massachusetts) and hydrologist Jim O’Connor (Oregon Water Science Center, Portland) gave presentations. Additional USGS contributors were geophysicist Daniel Brothers (Woods Hole), geologist Jason Chaytor (Woods Hole), geologist Thomas Cronin (Reston), hydrologist Julie Kiang (Reston), hydrologist Thomas Over (Urbana, Illinois), and geophysicist Tom Parsons (Menlo Park).

The full citation for the new report is:

Nicholson, T.J., and Reed, W.A., 2013, Proceedings of the Workshop on Probabilistic Flood Hazard Assessment (PFHA): U.S. Nuclear Regulatory Commission, NUREG/CP-0302, 241 p.,

All of the workshop presentation slides, a video of the workshop, the webcast, and the public meeting summary can be viewed at the NRC webpage.

Related Sound Waves Stories
Japan Lashed by Powerful Earthquake, Devastating Tsunami
March 2011
Experts Team Up on Tsunami Resilience in California
Sept. / Oct. 2013

Related Websites
Proceedings of the Workshop on Probabilistic Flood Hazard Assessment (PFHA): Held at the U.S. Nuclear Regulatory Commission Headquarters, Rockville, MD, January 29–31, 2013 (NUREG/CP-0302)
Fukushima Nuclear Disaster
Congressional Research Service
Workshop on Probabilistic Flood Hazard Assessment

in this issue:
 previous story | next story


Mailing List:

print this issue print this issue

in this issue:

cover story:
Changing Coral Reef Ecosystems Along West Maui

California's Sea Otter Numbers Continue Slow Climb

Research Experts Team Up on Tsunami Resilience in California

Historical Quake and Early East Coast Seismicity

Sea Otters Promote Recovery of Seagrass Beds

2013 Meeting of the Curators of Marine and Lacustrine Geological Samples Group

Publications California Seafloor Mapping Reveals Hidden Treasures

Proceedings of the Workshop on Probabilistic Flood Hazard Assessment

Sept. / Oct. Publications

Accessibility FOIA Privacy Policies and Notices

Take Pride in America logo logo U.S. Department of the Interior | U.S. Geological Survey
Page Contact Information: Feedback
Page Last Modified: April 15, 2014 @ 01:53 PM